[ITEM]
12.01.2019

Contoh Program Soal Linear

78

Contoh soal cerita program linear dan pembahasan biaya Rp 400.000,00 sedangkan untuk menanam jagung per hektarnya diperlukan biaya Rp 200.000,00. Movies Agar biaya tanam minimum, tentukan berapa banyak masingmasing padi dan jagung yang harus ditanam.

بِسْــــــــــــــــمِ اﷲِالرَّحْمَنِ اارَّحِيم Assalamu'alaikum teman teman. Kali ini kita akan mempelajari tentang program linier matematika sma. Materi ini memepelajari bagaimana mencari nilai maksimum/atau minimum dari suatu proses. Oke, mari kita lihat pembahasannya. Soal pertama,,, Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak 125 unit.

Keuntungan rumah tipe A adalah Rp 6.000.000,00/unit dan tipe B adalah Rp 4.000.000,00/unit. Keuntungan maksimum yang dapat diperoleh dari penjualan rumah tersebut adalah. Jawaban,,, misal: x = rumah tipe A y = rumah tipe B 100x + 75y ≤ 10.000 ⇒dibagi 25 --> 4x + 3y ≤ 400.(1) x + y ≤ 125.(2) Keuntungan maksimum: 6000.000 x + 4000.000 y =? Mencari keuntungan maksimum dengan mencari titik-titik pojok dengan menggunakan sketsa grafik: Grafik 1: 4x + 3y ≤ 400 titik potong dengan sumbu X jika y=0 maka x =400/4= 100 Titik potongnya (100, 0) Titik potong dengan sumbu Y jika x = 0 maka y =400/3= 133,3 Titik potongnya (0, 133,3) Grafik 2: x + y ≤ 125 titik potong dengan sumbu X jika y=0 maka x = 125 Titik potongnya (125, 0) Titik potong dengan sumbu Y jika x = 0 maka y = 15 Titik potongnya (0, 125) Gambar grafiknya.

E text editor for windows Warning Against Unauthorized Usage – crack, keygen, serial, etc. Obtained from anyone or any websites providing illegal serial numbers through crackers or Keygen groups. This is absolutely a violation of international and United States copyright laws. Download and experience the “World's fastest text editor” now! Download Now.

Tik potong: eliminasi x 4x + 3y = 400 x 1 ⇒ 4x + 3y = 400 x + y = 125 x 4 ⇒ 4x + 4y = 500 - -y = -100 y = 100 x + y = 125 x = 125 - y = 125 – 100 = 25 --> didapat titik potong (25, 100) Titik pojok 6000.000 x + 4000.000 y (100,0) 600.000.000 (0,125) 500.000.000 (25, 100) 150.000.000+ 400.000.000 = 550.000.000 Keuntungan maksimum adalah Rp.600.000.000 soal kedua,,,, Seorang pedagang menjual buah mangga dan pisang dengan menggunakan gerobak. Pedagang tersebut membeli mangga dengan harga Rp.

8.000,00/kg dan pisang Rp. Modal yang tersedia Rp. 1200.000,00 dan gerobaknya hanya dapat memuat mangga dan pisang sebanyak 180 kg. Jika harga jual mangga Rp.9200,00/kg dan pisang Rp.7000,00/kg, maka laba maksimum yang diperoleh adalah.

Jawab: Misal: x = mangga; y = pisang Model matematikanya: x ≥ 0; y≥ 0 8000x + 6000y ≤ 1200.000 --> dibagi 2000 ⇔ 4x + 3y ≤ 600.(1) x + y ≤ 180.(2) Laba penjualan mangga = 9200 – 8000 = 1200 Laba penjualan pisang = 7000 – 6000 = 1000 Laba maksimum = 1200x + 1000y maka grafiknya. Titik potong: Dari pers (1) dan (2) eliminasi x 4x + 3y = 600 x1 ⇒ 4x + 3y = 600 x + y = 180 x4 ⇒ 4x + 4y = 720 - - y = - 120 y = 120 x + y = 180 x = 180 – 120 = 60 titik potong = (60,120) Titik pojok 1200x + 1000y (0, 0) 0 (150, 0) 180.000 (60, 120) 192.000 (0, 180) 180.000 Laba maksimum adalah 192.000 untuk soal no 3,,, Luas daerah parkir 1.760 m2. Luas rata – rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp.1.000,00/jam dan mobil besar Rp. Jika dalam satu jam terisi penuh dan tidak kendaraan yang pergi dan datang, maka hasil maksimum tempat parkir itu adalah. Jawabannya,,, misal x = mobil kecil dan y = mobil besar, maka dapat dibuat persamaan sbb: 4 x + 20 y ≤ 1760 ⇒ x + 5 y ≤ 440 (1) x + y ≤ 200 (2) dari pers (1) dan (2) eliminasi x x + 5 y = 440 x + y = 200 - 4 y = 240 y = 240/4 = 60 x + y = 200 x + 60 = 200 x = 200 – 60 = 140 maka hasil maksimum 1000 x + 2000 y = 1000.

60 = 140000 + 120000 = Rp.

Sistem Pertidaksamaan Linear Dua Variabel, Contoh Soal, Rumus, Cara Menyelesaikan, Model Matematika, Pembahasan, Praktikum - Para pedagang atau pengusaha tentu ingin memperoleh keuntungan maksimum. Sebelum melakukan transaksi ataupun pengambilan keputusan dalam usahanya, mereka pasti membuat perhitungan yang matang tentang langkah apa yang harus dilakukan. Oleh karena itu, diperlukan metode yang tepat dalam pengambilan keputusan pedagang atau pengusaha tersebut untuk memperoleh keuntungan maksimum dan meminimumkan kerugian yang mungkin terjadi. • Setelah mempelajari bab ini, diharapkan kalian dapat • menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; • menentukan fungsi tujuan (fungsi objektif) beserta kendala yang harus dipenuhi dalam masalah program linear; • menggambarkan kendala sebagai daerah pada bidang yang memenuhi sistem pertidaksamaan linear; • menentukan nilai optimum dari fungsi tujuan sebagai penyelesaian dari program linear; • menafsirkan nilai optimum yang diperoleh sebagai penyelesaian masalah program linear. Pada pembahasan kali ini, kita akan menentukan penyelesaian sistem pertidaksamaan linear dengan dua variabel menggunakan metode grafik.

[/ITEM]
[/MAIN]
12.01.2019

Contoh Program Soal Linear

18

Contoh soal cerita program linear dan pembahasan biaya Rp 400.000,00 sedangkan untuk menanam jagung per hektarnya diperlukan biaya Rp 200.000,00. Movies Agar biaya tanam minimum, tentukan berapa banyak masingmasing padi dan jagung yang harus ditanam.

بِسْــــــــــــــــمِ اﷲِالرَّحْمَنِ اارَّحِيم Assalamu'alaikum teman teman. Kali ini kita akan mempelajari tentang program linier matematika sma. Materi ini memepelajari bagaimana mencari nilai maksimum/atau minimum dari suatu proses. Oke, mari kita lihat pembahasannya. Soal pertama,,, Tanah seluas 10.000 m² akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m² dan tipe B diperlukan 75 m². Jumlah rumah yang dibangun paling banyak 125 unit.

Keuntungan rumah tipe A adalah Rp 6.000.000,00/unit dan tipe B adalah Rp 4.000.000,00/unit. Keuntungan maksimum yang dapat diperoleh dari penjualan rumah tersebut adalah. Jawaban,,, misal: x = rumah tipe A y = rumah tipe B 100x + 75y ≤ 10.000 ⇒dibagi 25 --> 4x + 3y ≤ 400.(1) x + y ≤ 125.(2) Keuntungan maksimum: 6000.000 x + 4000.000 y =? Mencari keuntungan maksimum dengan mencari titik-titik pojok dengan menggunakan sketsa grafik: Grafik 1: 4x + 3y ≤ 400 titik potong dengan sumbu X jika y=0 maka x =400/4= 100 Titik potongnya (100, 0) Titik potong dengan sumbu Y jika x = 0 maka y =400/3= 133,3 Titik potongnya (0, 133,3) Grafik 2: x + y ≤ 125 titik potong dengan sumbu X jika y=0 maka x = 125 Titik potongnya (125, 0) Titik potong dengan sumbu Y jika x = 0 maka y = 15 Titik potongnya (0, 125) Gambar grafiknya.

E text editor for windows Warning Against Unauthorized Usage – crack, keygen, serial, etc. Obtained from anyone or any websites providing illegal serial numbers through crackers or Keygen groups. This is absolutely a violation of international and United States copyright laws. Download and experience the “World's fastest text editor” now! Download Now.

Tik potong: eliminasi x 4x + 3y = 400 x 1 ⇒ 4x + 3y = 400 x + y = 125 x 4 ⇒ 4x + 4y = 500 - -y = -100 y = 100 x + y = 125 x = 125 - y = 125 – 100 = 25 --> didapat titik potong (25, 100) Titik pojok 6000.000 x + 4000.000 y (100,0) 600.000.000 (0,125) 500.000.000 (25, 100) 150.000.000+ 400.000.000 = 550.000.000 Keuntungan maksimum adalah Rp.600.000.000 soal kedua,,,, Seorang pedagang menjual buah mangga dan pisang dengan menggunakan gerobak. Pedagang tersebut membeli mangga dengan harga Rp.

8.000,00/kg dan pisang Rp. Modal yang tersedia Rp. 1200.000,00 dan gerobaknya hanya dapat memuat mangga dan pisang sebanyak 180 kg. Jika harga jual mangga Rp.9200,00/kg dan pisang Rp.7000,00/kg, maka laba maksimum yang diperoleh adalah.

Jawab: Misal: x = mangga; y = pisang Model matematikanya: x ≥ 0; y≥ 0 8000x + 6000y ≤ 1200.000 --> dibagi 2000 ⇔ 4x + 3y ≤ 600.(1) x + y ≤ 180.(2) Laba penjualan mangga = 9200 – 8000 = 1200 Laba penjualan pisang = 7000 – 6000 = 1000 Laba maksimum = 1200x + 1000y maka grafiknya. Titik potong: Dari pers (1) dan (2) eliminasi x 4x + 3y = 600 x1 ⇒ 4x + 3y = 600 x + y = 180 x4 ⇒ 4x + 4y = 720 - - y = - 120 y = 120 x + y = 180 x = 180 – 120 = 60 titik potong = (60,120) Titik pojok 1200x + 1000y (0, 0) 0 (150, 0) 180.000 (60, 120) 192.000 (0, 180) 180.000 Laba maksimum adalah 192.000 untuk soal no 3,,, Luas daerah parkir 1.760 m2. Luas rata – rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan, biaya parkir mobil kecil Rp.1.000,00/jam dan mobil besar Rp. Jika dalam satu jam terisi penuh dan tidak kendaraan yang pergi dan datang, maka hasil maksimum tempat parkir itu adalah. Jawabannya,,, misal x = mobil kecil dan y = mobil besar, maka dapat dibuat persamaan sbb: 4 x + 20 y ≤ 1760 ⇒ x + 5 y ≤ 440 (1) x + y ≤ 200 (2) dari pers (1) dan (2) eliminasi x x + 5 y = 440 x + y = 200 - 4 y = 240 y = 240/4 = 60 x + y = 200 x + 60 = 200 x = 200 – 60 = 140 maka hasil maksimum 1000 x + 2000 y = 1000.

60 = 140000 + 120000 = Rp.

Sistem Pertidaksamaan Linear Dua Variabel, Contoh Soal, Rumus, Cara Menyelesaikan, Model Matematika, Pembahasan, Praktikum - Para pedagang atau pengusaha tentu ingin memperoleh keuntungan maksimum. Sebelum melakukan transaksi ataupun pengambilan keputusan dalam usahanya, mereka pasti membuat perhitungan yang matang tentang langkah apa yang harus dilakukan. Oleh karena itu, diperlukan metode yang tepat dalam pengambilan keputusan pedagang atau pengusaha tersebut untuk memperoleh keuntungan maksimum dan meminimumkan kerugian yang mungkin terjadi. • Setelah mempelajari bab ini, diharapkan kalian dapat • menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya; • menentukan fungsi tujuan (fungsi objektif) beserta kendala yang harus dipenuhi dalam masalah program linear; • menggambarkan kendala sebagai daerah pada bidang yang memenuhi sistem pertidaksamaan linear; • menentukan nilai optimum dari fungsi tujuan sebagai penyelesaian dari program linear; • menafsirkan nilai optimum yang diperoleh sebagai penyelesaian masalah program linear. Pada pembahasan kali ini, kita akan menentukan penyelesaian sistem pertidaksamaan linear dengan dua variabel menggunakan metode grafik.

Contoh Program Soal Linear В© 2019